The measurement of viscosity of thin polymer films

نویسندگان

  • W. Dera
  • C. Dziekoński
  • D. M Jarząbek
چکیده

The development of nanotechnology faces many problems, one of which is lack of a fast and cheap method for fabricating structures whose dimensions are less than 0.1 μm. One method to solve this problem is nanoimprint lithography (NIL). The method of fabricating nanometer scale patterns by NIL was first proposed by Chou1,2 in 1995. Nanoimprint lithography creates patterns by the mechanical deformation of imprint resist and has many advantages, such as low cost and high resolution. Unfortunately, in spite of the simplicity of the idea and significant development of the method, there are many problems which must be overcome. One of which is the proper valuer of viscosity. The viscosity is a very important property of resists used in NIL and many methods to measure viscosity in thin films have been developed. In this paper we present the innovative method which allows the measurement of the viscosity of thin film as a function of temperature and indentation depth. It is then possible to investigate the influence of substrate on the rheological properties of thin films. Thickness of the measured films was reduced to 30 nm whereas resolution of the indentation depth was reduced to 5 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of nanozeolite 13X on thermal and mechanical properties of Polyurethane nanocomposite thin films

Polyurethane/zeolite 13X nanocomposite films were fabricated using solution casting method. The synthesized nanocomposite films were structurally characterized using SEM, TGA and tensile analysis. SEM images showed appropriate distribution of nanocrystalline zeolite particles within polyurethane matrix. Better thermal stability of nanocomposite films in comparison to neat polyurethane was shown...

متن کامل

Effect of nanozeolite 13X on thermal and mechanical properties of Polyurethane nanocomposite thin films

Polyurethane/zeolite 13X nanocomposite films were fabricated using solution casting method. The synthesized nanocomposite films were structurally characterized using SEM, TGA and tensile analysis. SEM images showed appropriate distribution of nanocrystalline zeolite particles within polyurethane matrix. Better thermal stability of nanocomposite films in comparison to neat polyurethane was shown...

متن کامل

Viscoelastic properties of confined polymer films measured via thermal wrinkling†

We present a new wrinkling-based measurement technique for quantifying the viscoelastic properties of confined polymer thin films. This approach utilizes real-time laser-light scattering to observe the kinetics of thermally-induced surface wrinkling, which evolves isothermally as a function of annealing time. Specifically, wrinkling is induced by applying a thermal stress to a polystyrene film ...

متن کامل

Characterizing films of polyethylene blends: An application of colorimetric parameters measurements

This study reports an application of instrumental color measurement for quantifying and comparing the optical properties of high density polyethylene HDPE and low density polyethylene LDPE blend films and the effect of blending ratio and miscibility on these properties. The technique of spectrophotometry in transmission and reflectance modes can be used as a versatile tool to evaluate the color...

متن کامل

OPTICAL PROPERTIES OF THIN Cu FILMS AS A FUNCTION OF SUBSTRATE TEMPERATURE

Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometery (single wavelength of 589.3 nm) and spectrophotometery in the spectral range of 200–2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometery measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016